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Nomenclature

ACCESS

DOF

FTS

ISCF

LEO

LTV

MTV

PSCI

RMS

SEI

SPDM

SSRMS

TMS

VGT

Assembly Concept for Construction of Erectable Space Structures

degree of freedom

Flight Telerobotic Servicer

in-space construction facility

low Earth orbit

lunar transfer vehicle

Mars transfer vehicle

preshaped command input

remote manipulator system

Space Exploration Initiative

Special Purpose Dexterous Manipulator

Space Station Freedom remote manipulator system

tip manipulator system

variable-geometry truss
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Abstract

Many future human space exploration missions will probably require
large vehicles that must be assembled on orbit. Thus, a device that can

move, position, and assemble large and massive spacecraft components on

orbit becomes essential for these missions. This paper describes a concept

for such a device--a space crane concept that uses erectable truss hardware

to achieve high-stiffness and low-mass booms and uses articulating-truss

joints that can be assembled on orbit. The hardware has been tested

and shown to have linear load-deflection response and to be structurally

predictable. The hardware also permits the crane to be reconfigured into
different geometries to satisfy future assembly requirements. A number

of articulating and rotary joint concepts have been sized and analyzed,

and the results are discussed in this paper. Two strategies have been

proposed to suppress motion-induced vibration: placing viscous dampers

in selected truss struts and preshaping motion commands. Preliminary

analyses indicate that these techniques have the potential to greatly enhance
structural damping.

Introduction

Future human missions proposed for the Space

Exploration Initiative (SEI) include establishing a lu-

nar base and exploring Mars (ref. 1). Because these

missions will not occur for many years, the missions,

together with the spacecraft necessary to accomplish
them, are not well-defined. Currently, many differ-

ent configurations are being investigated for the lunar

and the Mars transfer vehicle (LTV and MTV). Ta-
ble 1 lists the total mass and reference dimensions

for representative configurations. (See refs. 2 and 3.)
One feature typical of these proposed spacecraft is

that they are too large and massive to be placed

into low Earth orbit (LEO) as a complete unit by

a single launch of any current U.S. launch vehicle or

even by a single launch of any proposed heavy-lift

launch vehicle. (See table 1.) Consequently, these
spacecraft must be assembled in LEO with a device

such as a space crane (ref. 4). Assembly could take

place at a space station or at a separate in-space con-

struction facility (ISCF), as illustrated in figure l(a),
or the transfer vehicle itself could serve as the as-

sembly platform, as illustrated in figure l(b). Major

uses of the space crane include moving large vehicle

components together for assembly (or apart for dis-
assembly), moving components from the delivery ve-

hicle to a construction site, moving the entire vehicle,

or helping service and process reusable LTV's and

MTV's. Because on-orbit assembly operations and

facilities that require a crane are not well-defined, the
space crane concept should provide a generic assem-

bly capability that can be developed independently

of any one spacecraft concept, construction scenario,

or available on-orbit assembly infrastructure.

Table 1. Parameters for Proposed SEI Spacecraft
and U.S. Launch Vehicles

(a) SEI spacecraft parameters

Spacecraft
Lunar transfer vehicle

(with aerobrake)
Mars transfer vehicle

(with aerobrake)
Nuclear Mars vehicle

Total mass,
Ibm

420 000 490 000

1900 000

1900 000

Reference

dimensions

Diameter, Length,

ft ft __
50 75

ll0 170

98 360

(b) U.S. Launch vehicle parameters

Launch

vehicle

Space Shuttle a
Titan 4a

Shuttle C b

National launch system b
Heavy-lift launch vehicle b

Payload shroud
size

Mass to

low Earth Diameter, [ Length,

orbi t , Ibm _ ft | ft

43 000 15 ] 60
39000 16.7 I 65

150000 15 I 82

300 000 41 I 98
300 000 41

aOperational.

bproposed.



Space crane

 odu,araerobrake
construction %

Positioning
attach ment

__ _ _ \ transfer vehicle
end effectors L-Space crane

(a) In-space construction facility with cranes.
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Figure 1. On-orbit assembly of large spacecraft.
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Figure 2. Space crane concept.

In general, a space crane system, such as the one

shown in figure 2, is anticipated to have three major

elements: (1) a mobile base that can move around

the work site (ref. 5), (2) a crane body that con-
sists of booms and articulating-truss joints to pro-

vide coarse tip positioning over large distances, and

(3) a tip manipulator system (TMS) that provides

additional dexterity and precisely positions payloads.
Initially, the TMS can be used to help assemble the

components of the crane body. The TMS can also
be mounted to a mobile base so that it can translate

along the crane body. The representative space crane
body shown in figure 2 has three truss booms and a

total of four articulating joints: three single-degree-

of-freedom (DOF) elbow joints connecting the booms

and a single-DOF rotary joint connecting the base of

the crane body to the mobile base.

For a space crane to be viable for large-scale on-

orbit assembly operations, it must possess several key

features. The most important feature is that it be
structurally adaptable, which is defined here as the

ability of the structure to be reconfigured to adapt to

changing operational requirements. A second feature

is that it be structurally predictable. This feature is

important because it is difficult and costly to per-
form ground-based tests on a complete full-scale sys-

tem that has been designed to operate in zero-gravity

(ref. 4). Structural predictability is also important
because it can simplify the design of the control sys-

tem. Other features the space crane should exhibit

are the ability to move large masses within a required

acceleration envelope, long reach, and easily imple-

mented passive damping for vibration suppression.
Because current manipulators for space applications

exhibit none of these features, their applicability for

on-orbit assembly of MTV and LTV spacecraft is lim-

ited. This paper describes a space crane concept that
exhibits all these features. This paper also summa-

rizes the current structural hardware applicable to

the space crane body and the results of experimental

and analytical studies to characterize structural be-

havior of the body components. The mobile base and
tip manipulator system elements of the space crane

are not discussed in this paper.

Operational and Proposed Space

Manipulators

Figure 3 shows one operational and four proposed

in-space manipulator systems having the broad range
of performance characteristics listed in table 2. These

manipulator systems include the Space Shuttle re-

mote manipulator system (RMS, refs. 6-8) the Space

Station Freedom RMS (SSRMS, ref. 9), the Special
Purpose Dexterous Manipulator (SPDM, ref. 9), the



Flight TeleroboticServicer(FTS,refs. 10and 11),
andavariable-geometrytrussmanipulatorcalledthe
TRUSSARM(ref.12).TheSpaceShuttleRMS(see
fig. 3(a)) is the only manipulatorsystemcurrently
operational,andit hasbeenusedduringmanyShut-
tle missionsoverthelastdecade.TheRMS,SSRMS
(fig.3(b)),FTS(fig.3(c)),andSPDM(fig.3(d))are
allderivedfromthesamebasicconcept;that is,high-
stiffnesstubular boomsareconnectedtogetherby
rotaryjointsdrivenby motorswithmechanicalgear-
boxes.Asastructuralcomponent,theserotaryjoints
arerelativelyflexibleandexhibitnonlinearstructural
behaviorbecausethe loadpath throughthejoints
is typicallycomplexandinvolvesmanymechanisms.
(See,for example,the RMSelbowjoint shownin
fig.4(a).)

Anotherfeatureof theserotaryjoints is that the
driveandpivot aregenerallyclosetogether;there-
fore,the overallstiffnessof the manipulatorsis re-
ducedbecausetheequivalentareamomentof inertia
is small. Thesejoints areusuallynot lightweight,
andthetotal joint masscanbealargepercentageof
themanipulatormass.In theRMS,for example,the
rotaryjoints compriseabout60percentof thetotal
mass(ref.8). Scalingthe sizeof theserotaryjoints
to achievehigherstiffnesswouldprobablyresultin
a significantincreasein joint mass.A commonde-
ficiencyamongthe manipulatorslistedin table2 is
that a givenconfigurationis not easilymodifiedto
adaptto changingrequirementsbecausethenumber
of degreesof freedom,booms,andjointsis fixed(al-
thoughreconfigurationwasconsideredin thedesign

of theFTS).Also,thepositioningdevicesgenerally
lackeitherthe capabilityto handlemassivespace-
craft componentsor thereachrequiredto assemble
theproposedspacecraftlistedin table1.

TheTRUSSARM(ref.12),shownin figure3(e),
representsa classof adaptivestructures,knownas
variable.geometrytruss (VGT) structures,with a
largenumberof degreesof freedom.(Seeref. 13.)
TheTRUSSARMdifferssignificantlyfromthe pre-
viousmanipulatorsystemsin that theconceptincor-
porateshigh-stiffness,high-strength,and low-mass
trussstructures.Linearactuators,locatedin thebat-
tenframemembers,areextendedto providethenec-
essarypositioningcapability.(Linearactuatorsare
definedasactuatorsthat provideextensionin one
DOFalongtheaxisof theactuator.)

Conceptually,theTRUSSARMcontainsthreeac-
tuators in eachbatten frame,and selectedbatten
memberscanbeextendedorretractedto providear-
ticulationabouttwoaxesandlinearextensionalong
thetrusscenterlineofeachbattenframe.Trussmem-
bersmusthavehinges(withoneormoreDOF)near
orat thenodesto accommodatetherequireddegrees
of freedomof thetruss.A typicalTRUSSARMcon-
figurationusesa total of 99actuators.(Seeref. 13.)
This largenumberof degreesof freedommaybeun-
necessaryfor most on-orbitassemblytasks. Fur-

thermore, the large number of hinges and actua-
tors in a TRUSSARM may lead to poor structural

predictability and significant nonlinearity for this

manipulator.

Table 2. Characteristics of Operational and Proposed Space Manipulators

Space manipulators
RMS

(operational)
SSRMS

(proposed)
SPDM

(proposed)
FTS

(cancelled)

Payload, Ibm
65 000

255 200

1 200

1 200

Tip force, lbf
12

al0

25

20

Tip velocity, in/sec
2.40 24.00

a.4_14.60

%60-1.20

24.00

aNot finalized.

blncludes flight-support equipment.
cWith artificial vision.
dTotal for both arms.

_For each arm.
/Not to exceed for all flight elements.

Positioning

accuracy
+in. ] 4-deg DOF
2.00 t 1.0 6

1.80 I .7 7

.05 I %5 d19

1.00 I 3.0 d14

Reach, in. Weight, lbm
603.0 966

694.0 b3834

e78.4 1800

%0.0 /1500

3



(a) Space Shuttle RMS. (b) Space Station Freedom RMS.

(c) FTS. (d) SPDM.

S Batten frame

Hing7e " ?Actuator

/.t

(e) TRUSSARM.

Figure 3. Operational and proposed space manipulators.



(a) Space Shuttle RMS elbow joint.

Many different configurations exist for both the
space crane booms and the articulating-truss joints,

and different combinations of joints and booms can

be assembled to produce a variety of capabilities.

The truss booms, for example, can be constructed

with either the four-longeron or the three-longeron

concepts shown in figure 5(b). An advantage of the

four-longeron boom is the structural redundancy pro-
vided by the fourth longeron. However, the thrce-

longeron truss boom provides a lower part count and

a more natural transition to certain articulating joint

concepts. In addition to the articulating-truss el-

bow and rotary joints described previously, variable-

geometry truss joints (fig. 5(a)) can be used if more
than one DOF is needed at a particular joint loca-

• tion. Also, a two-DOF articulating-truss joint can

be constructed by connecting a rotary and an elbow

joint together.

(b) Space crane elbow joint.

Figure 4. Elbow joint concepts.

Structural Concept

The space crane presented in this paper uses a
structural concept different from that of the RMS,

SSRMS, FTS, and SPDM. The space crane booms

are trusses, which generally possess significantly

higher flexural and torsional stiffnesses than do solid
or tubular beams of the same length and mass. Us-

ing truss booms allows lightweight space cranes to be
constructed with large reach envelopes. The space

crane articulating-truss joints are designed to per-
mit boom rotation without a significant reduction

in stiffness (ref. 14). The space crane elbow joint,

shown in figure 4(b)i incorporates linear actuat0rs

as variable-length truss elements. The joint achieves

articulation through actuator length change accom-
panied by rotation of simple pin connections between

adjacent truss members. The space crane rotary

joint (fig. 5(a)) incorporates an annular bearing race

and discrete-bearing assemblies, which connect to the

booms through transition truss sections. Because the

elements are primarily loaded in tension and com-

pression, these articulating-truss joint concepts ex-
hibit inherently simpler load paths than do the com-

plex joint mechanisms used in the RMS and similar

systems. Hence, joint stiffnesses and strengths can be

accurately predicted from tension-compression tests
of each element.

Rotary joint Elbow joint

Variable-geometry
tress joint

(a) Articulating-truss joint concepts.

Four Iongeron Three Iongeron

(b) Truss boom concepts.

Figure 5. Space crane components.

The costs for space missions may be significantly

reduced if the structural concepts use or adapt previ-

ously developed space-qualified hardware, use mod-
ular components, and are adaptable. The current

space crane concept is developed around proven

erectable truss hardware, which is described in ref-

erence 15. This hardware can be easily and quickly



assembled,disassembled,and reconfiguredinto dif-
ferentgeometries.Therefore,thespacecranehasthe
adaptabilityto meetavarietyofassemblysituations.
Forexample,trussboomsandarticulatingjointscan
beaddedorremoved,or existingtrussboomscanbe
lengthenedorshortened.Also,additionaljoints(and
theirassociatedDOF's)canbeusedto adddexterity
or redundancyfor rigid-bodypositioning.

The erectabletruss joint is an exampleof a
genericstructuralconceptbecausethe hardwareis
easilyscaledfor differentapplications.Currently,
threesizesof erectabletruss joints (1-, 2-, and
4-in-diameterjoints havebeendesignedand fabri-
catedfrom 7075-T6aluminum. (Seefig. 6.) The
1- and2-in-diameterjoints areconsideredstateof
the art becausethey havebeenusedfor several
ground-basedassemblyandstructuraltests(refs.15-
17). The 4-in-diameterjoint is in the prototype
stageof development,andit is beingdesignedfor
applicationsthat requireheavilyloadedmembers.
Thejoints shownin figure6 havebeencharacter-
izedin load-deflectiontests,andthestiffness(EA)
and ultimate load (Fult) for eachjoint arenoted
in the figure. Usingerectabletruss hardwareal-
lowsthe trussbay depth (andassociatedbending
stiffness)to be scaledwhererequired. Also, the
truss beamcanbe locally stiffenedsimply by re-
placingselectedstruts. Similarly,truss members
with higherbucklingstrengthcan bc substituted
for the standardcomponentsin highlyloadedareas
of the spacecrane. Advancedevelopmentwork is
underwayat the LangleyResearchCenter to de-

velop truss joints with a low coefficient of thermal
expansion. This effort is directed at fabricating the

primary load-bearing components in these erectable

truss joints from braided graphite preforms impreg-
nated with a suitable matrix.

Structural Component Analysis and

Testing

This section presents a summary of analytical and

experimental results from development studies of the

space crane body and its components.

Truss Booms

Figure 7 shows a truss boom test article assem-

bled from eight cubic-truss bays, each 39.4 in. long,
and cantilevered from a structural backstop. This

eight-bay test unit was chosen to establish a per-

formance baseline for comparing static and dynamic

test results on the articulating-truss joint (ref. 16).
The truss boom was constructed with erectable truss

hardware, which consists of struts, erectable joint

hardware, and truss nodes. The 1-in. erectable

joint hardware shown in figure 6 was used to make
the structural connection between the struts and

the truss nodes, and the struts were made of 1-in-
diameter aluminum tubes with wall thicknesses of

0.058-in. For space applications, the struts will prob-

ably be constructed of high-stiffness graphite/epoxy

tubes, which are similar to those described in refer-
ences 18 and 19.

L-90-11950

Figure 6. Erectable truss joint hardware. Fult indicates ulti-
mate load and EA indicates stiffness.

L-92-08955

Figure 7. Truss boom test hardware.

The static load-deflection behavior and the modal

characteristics were experimentally determined for

thc truss boom and are compared with linear finite-

element analysis results in figures 8(a) and 8(b), re-
spectively. For the static test, the truss boom was

loaded three bays inboard from the tip, and the corre-

sponding deflections were measured one bay inboard

from the tip. The truss boom was loaded to 4-270 lbf

O;:,,r::N _L -=_....,._ _, L _: I_ ,% _
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for three cycles to obtain the load-deflection curve

shown in figure 8(a). The load-deflection response is
linear with very little hysteresis over the entire load

range. The slope of the load-d_flection response is

about 445 lbf/in., which is within 1 percent of the an-

alytical predicted slope of 446 lbf/in, obtained from

linear finite-element analysis. This close agreement

between the experimental and analytical stiffnesses

suggests excellent static predictability and linearity
for the erectable truss hardware.

3OO

2OO

100

o
_:-100

-200

-300

I ),.,/
......... Experiment i............."_" .................

............
.0 -.5 0 .5 1.0

Deflection, in.

(a) Load-deflection response.

Phase

angle

...........'/I Ti lii< r ' _V I......].. (Analysis.) .... _.......

2 4 6 8 10 20 30

Frequency, Hz

(b) Measured frequency response.

Figure 8. Truss boom response to static and dynamic loading.

The modal characteristics were obtained by" ap-

plying random forces (from vibration exciters) at the

truss nodes and by measuring the resulting acceler-
ation time response. Experimental frequencies were

obtained with the frequency response functions, and

the experimental mode shapes were obtained with

commercial modal analysis software. Figure 8(b)

shows a typical experimental frequency response
function for the truss boom. The three distinct fre-

quency peaks at 6.79, 7.00, and 24.84 Hz correspond

to the two first bending modes and the first torsion

mode. The erectable truss hardware had very low

structural damping, with each of the experimental

modes having a modal damping value of less than
0.60 percent. The analytically predicted frequen-

cies for the lowest three modes were 6.77, 7.02, and

24.41 Hz. The good Correlation between the experi-

mental and analytical results confirms that the struc-

tural performance of the erectable truss hardware

is repeatable, because the static and dynamic per-
formance was accurately predicted with experimen-

tal stiffness data reported previously in reference 15.

The correlation also indicates that linear analysis can

accurately predict the dynamic performance of longer

beams or beams of different configurations fabricated
with the erectable truss hardware.

Articulating-Truss Joints

Elbow joints. The articulating-truss joint test

hardware shown in figure 9 consists of a first-

generation elbow joint located between two truss
booms. The first truss boom, which is connected

at one end to a structural backstop, consists of two

cubic-truss bays, each 39.4 in. long, and the second

truss boom consists of four cubic-truss bays. The
same 1-in-diameter erectable hardware described in

the previous section is also used in this test model.
A transition truss structure is required to connect

the four-longeron truss booms to the three-longeron

articulating-truss joint. The articulating-truss joint

has only three longerons to avoid having to synchro-

nize two parallel actuators during joint articulation.
The two linear actuators in the articulating-truss

joint have been extended to produce a 90 ° angle in

the test model, as shown in the inset of figure 9.

The joint is equivalent in length to two truss bays,
and it has seven hinges, two actuator support beams

(labeled beam in fig. 9), two linear actuators, and

erectable truss hardware. The hinges allow the joint
to rotate as the linear actuators are extended. Three

hinges are located at each vertex of the joint A-frame,
and the other four hinges are located near each end

of the support beams. The A-frame maintains the

truss cross-sectional depth as the joint rotates and

stabilizes the three hinges located at each apex. The
A-frame is connected to the two linear actuators by a

hinge. The two actuator support beams are attached
to the end of each linear actuator. The two linear

actuators provide the extension needed to rotate the

joint, and each has a mass of about 26.0 lbm. These

actuators are inexpensive devices chosen to evaluate

7
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Figure 9. First-generation elbow truss joint test hardware.
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(b) Elbow joint with actuators replaced by steel
tubes.

Figure 10. Load-deflection response of elbow joint test hardware.
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the kinematicperformanceof the joint andarenot
flight-qualitycomponents.

Figure10(a)showsthe staticload-deflectionbe-
haviorforthefirst-generationelbowjoint. Thejoint
wastestedat a0° articulationangleto comparethe
resultswith thoseobtainedfor thetrussboom.(See
fig.8.) Theloadcycleappliedto theelbowjoint was
the sameasthat appliedto the trussboom. The
best-fitslopeof the load-deflectioncurvewhenthe
loadispositiveis about258lbf/in., whichis 41per-
centlessthan that of the trussboom. (Seefig. 8.)
The joint load-deflectioncurveexhibitssomenon-
linearity,hysteresis,and backlash. The backlash,
dueto loose-fittingpinsin thehingeandloose-fitting
ballsin thedrivescrewof theactuator,isestimated
to be0.09in. Thisvaluewasobtainedby perform-
ing a bestlinearfit throughthedatawhentheload
is positiveand anotherthroughthe datawhenthe
loadisnegative.Thedifferencein thebest-fitvalues
at theabscissawastakenasthebacklash.

To separatethe amountof backlashin the joint
hingesfromtheamountin theactuatordrivescrew,
theactuatorswerereplacedwith 2-in-diametersteel
tubeswith wallthicknessesof 0.25in., anda second
staticload-deflectiontestwasperformed.Theaxial
stiffnessof the steeltubewasnot matchedto the
originalactuators. The load-deflectioncurvefor
this test (fig. 10(b))showsa significantreduction
in the nonlinearity,hysteresis,and backlash. As
indicatedon the figure,a backlashof 0.05in. was
measuredwith the techniquepreviouslydescribed.
Thisremainingbacklashisattributedto loosenessin
the pinsof the hingejoints. Currently,studiesare
beingperformedto evaluatethe load-displacement
behaviorof actuatorswith close-fittingballs in the
actuatordrivescrew.

Theprimaryfactorin designingthe elbowjoint
shownin figure9 waskinematicperformance,which
includedactuatorstrokeratioandactuatorauthor-
ity (definedas the changein actuatorlengthre-
quiredto provide1° of joint articulation).Recently,
astudywasconducted(ref.20)to developasecond-
generationarticulatingjoint for which both kine-
maticperformanceandimprovedstiffnesswerethe
primarydesignfactors.Thethreearticulating-truss
joint conceptsshownin figure11wereevaluatedin
the study. Severalfeaturesof thesejoints aresim-
ilar to thosein the joint test hardwareshownin
figure9. Eachof thesejoint conceptsusesa sin-
glepair ofvariable-lengthactuatorsconnectedin se-
riesto achievelarge-anglejoint articulation,andthe
trussbays,whichcontainthe actuators,haveonly
threelongerons.However,thethreeconceptsshown
in figure11usethreedifferenttransitiontrussconfig-

urationsto connectthefour-longerontrussboomsto
thethree-longeronarticulating-trussjoints.Thema-
jor structuralelements,suchastheactuators,single-
DOFhingenodes,andtrussstruts,arecommonto
thethreejoint concepts.

(a)JointconceptA.

(b)JointconceptB.

(c)JointconceptC.
Figure11.Elbowjointconcepts.

In thestudy,thekinematicandstructuralperfor-
manceof eachof the threejoint conceptswaseval-
uatedasa functionof geometricdesignparameters
(ref.20). Oneobjectiveof the studywasto select,
for eachjoint concept,a specificgeometricconfigu-
rationthat maintainedthehighestpercentageof the
referencetrussstiffnessacrossthejoint, whilestill
allowinglarge-anglearticulation(at least120°) with
an actuatorstrokeratio lessthan 2 (i.e., a single-
fold actuator).Thespecificgeometriesselectedare
shownin figure11.A secondobjectivewasto com-
parethestructuraldynamicperformanceofthethree
conceptsanddeterminewhetheranysignificantdif-
ferencesexist. This objectivewasaccomplishedby
determiningthe dynamicbehaviorof a 46-ft-long
cantilevertrussbeam,with anarticulatingjoint at
themidspan,asa functionof joint articulationan-
glefor eachof the threejoint concepts.Figure12
showsthe fundamentalnatural frequenciesof the

9



articulatingtrussbeamfor eachconceptwith and
without a tip mass.Thefundamentalfrequencyfor
all theconceptmodelswithout a tip massis about
2.2Hz, andthe frequencywith a tip massis about
0.6 Hz. All curvesare relativelyflat overthe en-
tire 120° articulationrange.Themode'shapefor all
threejoint concepts(withandwithoutatip mass)at
0° articulationangleis first cantileverbending.As
thejoint is rotatedto 120°, the fundamentalmode
shapechangesto torsionin theroot trussboomfor
conceptsA andB andto bendingaboutthe joint-
hingeaxisforconceptC. Tile three articulating-truss
joint concepts analyzed in reference 20 had similar

static and dynamic structural performance despite

significant differences in their geometries. There-

fore, this analysis leads to the conclusion that criteria
other than structural or kinematic performance can

be used as a basis for selecting among them.
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Figure 12. Fundamental natural frequencies for elbow joint
concepts A, B, and C with and without a tip mass.

Rotary joint. A rotary joint is used to provide a

rotational degree of freedom around the space crane

boom axis. (See fig. 2.) The rotary joint concept
shown in figure 13 was proposed during the prelimi-

nary design phase of Space Station Freedom to slew

the solar arrays. Several point design studies (ref. 21)

of the joint were conducted for cubic-truss bay sizes

of about 16.4 ft. This rotary joint consists of tran-
sition truss members, an annular ring, eight bearing

assemblies, and cross-tie members. The transition
truss members connect the truss booms to the an-

nular ring and bearing assemblies. Each side of the

annular ring has 12 transition truss members for a
total of 24 members. The cross-tie members provide
additional stiffness where the transition truss mem-

bers connect to the discrete-bearing assemblies. The

transition truss and cross-tie members use the same

type of erectable joint hardware as the truss booms to

take advantage of structural predictability and ease
of on-orbit assembly. A mechanism comprised of elec-

trical motors and gearboxes would probably drive the

rotary joint, and a brake would probably be used to

hold the rotary joint at a desired orientation. Be-
cause the drive mechanism would not be in the struc-

tural load path of the rotary joint, the primary source

of significant nonlinear structural behavior will prob-

ably be the discrete-bearing assemblies.

Inboard transition Cross-tie

truss

_\/_ _ I [ Outb°ardtra--__ I truss nsiti°n

!_...._/-,,_ _'. __-Annul_Br_:£ing assemblY

Rotation angle

Figure 13. Discrete-bearing rotary joint concept.

The rotary joint structural performance is impor-
tant because the joint should provide the strength

and stiffness of an equivalent length of truss with-
out a substantial increase in structural mass. The

joint experiences the same loads as the truss it re-

places, and as a result, each joint has to be designed

to withstand those loads. The transition struts, for

example, should be designed so that the Euler buck-
ling load is greater than the loads experienced dur-

ing space crane operations. Other design parame-
ters that determine the structural performance of the

rotary joint include the annular ring diameter and

thickness, the transition truss member axial stiffness,

and whether the rotary joint length is the equivalent
of one or two bays of the truss boom. To assess the

joint performance as a function of these design pa-

rameters, analytical studies were conducted to assess

the dynamic characteristics of a truss boom with and

without the rotary joint (ref. 22). The design pa-

rameters were varied and the frequencies compared
with the truss boom frequencies. Joint designs were

considered acceptable when the frequencies approxi-

mated those of the truss boom. One important con-

clusion from this study was that the one-bay rotary

joint concept was more desirable than the two-bay ro-
tary joint concept because of the higher Euler buck-

ling allowables of the shorter transition truss mem-

bers. Another important conclusion was that the

10



differencein structuralmassbetweenthe one-and
two-bayrotary joint conceptsis smallif the annu-
lar ring diameteris greaterthan 10ft, asshownin
figure14. However,a considerablestructuralmass
penaltyis incurredbyboththeone-andthetwo-bay
joint whenthering diameterbecomessmall.

1400
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6O0

400
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_ One-bay joint

1/_ I I I I I l I

0 8 10 12 14

Ring diameter, ft

Figure 14. glass of one- and two-bay rotary joints as a func-
tion of ring diameter.

Operational Considerations

Reach Envelope

In general, the reach envelope required for the

space crane is a function of many parameters, such

as the size of the spacecraft being assembled, whether
the crane is attached to an ISCF or the spacecraft,
and whether the crane is mounted to a mobile trans-

porter. A study (ref. 23) was conducted to determine
the reach envelope for a 360-ft-long space crane that

has a 16.4-ft cubic-bay truss size and is attached to a

representative construction facility. Two- and three-

boom configurations were considered in the study,

and the three-boom configuration is shown in fig-
ure 2. The reach envelope was obtained by rotating

each of the elbow joints sequentially in increments of

10 °, calculating the crane tip location at each incre-

ment, and superimposing the results onto the con-

struction facility work area. Because the rotary joint
was not rotated for this study, only a planar section

of the reach envelope was defined.

Figure 15 shows the reach envelope sections pro-
duced by the three-boom space crane when the max-

imum elbow joint articulation angle is limited to 90 °

v
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(a) Maximum joint angle = 90 °.
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(b) Maximum joint angle = 120°.

Figure 15. Computed space crane reach envelope subject to
elbow joint articulation constraints.
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andto 120°. Thefigurealsoshowsa sideprojection
oftheconstructionfacilityusedtodefinethereachre-
quirements.By increasingthemaximumjoint angle
from90° to 120°, theentireconstructionfacilitywork
areacanbereached,asindicatedby theenvelopein
figure15(b).Asthemaximumjoint angleincreases,
thetotal areawithin thereachenvelopesectionalso
increases.Basedon thisstudy,thespacecranemust
haveatleastthreeboomsandelbowjointswith max-
imumjoint anglesof at least120° to reachall loca-
tionswithin the constructionfacilityworkareaand
to maintainanactuatorstrokeratioof lessthan2in
theelbowjoints.

Rigid-Body Positioning

The simplest method for positioning the space

crane tip is open-loop control of the actuators in

the rotary and articulating joints. Because the
erectable truss hardware is linear and predictable,

the open-loop positioning precision of the space crane
will probably be limited by thc accumulated back-

lash present in thc articulating joints. Reducing

or eliminating the backlash in the articulating-truss

joint components may allow adequate rigid-body tip-
positioning accuracy to be achieved with a simple

open-loop control system. The accuracy that can bc

obtained with this approach has not yet been deter-

mined experimcntally.

The major loads in the space crane will proba-
bly be induced from accelerating and decelerating

massive payloads during positioning operations. Ac-

counting for the effects of these loads on the struc-

ture represents one method to define an open-loop
control scheme for the space crane. An example of
this method is to determine thc maximum rate at

which an articulating-truss joint can be rotated with-

out buckling any members in the space crane. (See

fig. 16(a).) In this analytical study, a sine function

(fig. 16(b)) was chosen as the joint rotation profilc
for tile elbow joint shown in figure 9, and the time

required to rcach a 1-rad angle was varied from 5

to 60 sec. Thrcc different tip masses (0, 2204, and

11 023 lbm) were studied, and thc peak bending mo-

ment at the root was computed and converted into an
equivalent axial force in the four root-bay longerons.

As shown in figure 16(c), considering Euler buckling
of thc truss members limits the minimum slew time

for a 2204-1bm tip mass to about 8 sec. For slew
times on the order of 60 sec, the peak member forces

are about 10 percent of the longeron Euler buckling

load (1216 lbf) for all the tip masses studied. Similar

analyses can bc used to define open-loop slew rates
for other joint rotation profiles. Other failure crite-

ria, such as the maximum dynamic force in a passive

12

damping structural member, can also be used to de-

fine open-loop control profiles with this method.
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Figure 17. Vibration response of elbow joint model with and

without damping augmentation.

Vibration Suppression

As noted previously, the erectable truss hardware

has little inherent damping. Therefore, damping

augmentation may be necessary for vibration sup-

pression in the space crane. The following hierar-

chical strategy for improving vibration suppression

(in increasing order of complexity) can be imple-
mented: passive damping, preshaped command in-

put (PSCI), and active vibration suppression. One
approach to vibration suppression is to replace se-
lected truss members with structural elements that

contain passive dampers. For example, devices that

are capable of resisting static loads in addition to

providing substantial amounts of viscous damping
have been designed and space-qualified components

have been fabricated (refs. 24 and 25). Figure 17

shows an example of the damping augmentation that

might be achieved with these dampers. An analyt-
ical model of the elbow joint (fig. 9) with a 2204-

lbm tip mass (fig. 17(a)) is slewed through 1 rad in

10 sec (fig. 17(b)). The undamped tip displacement
is shown as a dashed line in figure 17(c). When pas-

sive dampers (with a representative damping coeffi-
cient of 8000 lbf-sec/in.) are included in the three

truss members of the root truss bay (fig. 17(a)), the

tip deflection is greatly reduced (the solid line in

fig. 17(c)). The viscous dampers described in refer-
ences 24 and 25 also exhibit significant damping over

a wide frequency range, as shown by the test data in

figure 17(d). This feature is important because the

natural frequencies of the space crane change as the

payload and the position are varied.

Another technique for vibration suppression is

preshaped command input. The PSCI is an open-

loop technique based on the principle that the system

input (e.g., actuator commands) can be modified so
as not to excite responses of selected structural fre-

quencies (ref. 26). By modifying the actuator exten-

sion rate, the space crane is able to complete a spec-
ified move and have little residual motion at the end

of the move. This technique has several advantages:

it is simple to implement because it requires knowl-

edge of only the system frequencies (not the mode

shapes) and it is an open-loop approach. Another
advantage is that the performance can be designed

such that it is insensitive to frequency or damping ra-

tio over a specified bandwidth. Also, multiple modes
can be suppressed simultaneously (ref. 27). Figure 12

shows that for certain space crane configurations, the

crane fundamental frequency remains fairly constant
as booms are rotated for an unloaded crane and for a

crane with a tip mass, even though the mode shape

is changing. (See refs. 20 and 23.) Thus, an input
modified to suppress residual motion induced by the
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fundamentalfrequencywouldbeeffectivethroughout
that entirerangeof motionof thespacecrane.

Passivedampingsystemsareeasierto implement
andlesscostlyto developthanactivesystems.Thus,
currentspacecraneresearchfocuseson the tech-
niquesof augmentedpassivedampingand PSCI.
Analysesperformedto dateindicatethat thesetech-
niquesgreatly enhancethe structuraldampingin
thespacecraneandmaybc adequatefor vibration
suppression.Thus,activevibrationcontrolmethods
needonlybeconsideredif the simplermethodsde-
scribedpreviouslyarenotadequate.

(a)ACCESSexperiment.

experiment,two astronautsworkingfromfixedfoot
restraintswereableto assemblea 45-ft-long,189-
lbm trussbeamconsistingof 93strutsasshownin
figure18(a).Thebattensandlongeronsin thetruss
were4.5ft long,thediagonalswere6.36ft long,and
thestrutswere1in. in diameter.Theassemblyrate
for this trusswasabout17see/strut.

A largerscaletrusshasalsobeenassembledwith
the aidof a mobiletransporterin neutralbuoyancy
tests (ref. 17),asshownin figure18(b). In these
tests,a three-baycubictrussconfiguration(consist-
ing of forty-four2-in-diameterstrutsthat were15ft
long)wasassembledby a pair of test subjectsin a
simulatedspaceenvironment.Workingfrom a mo-
biletransporter,theassemblyrateforthis largetruss
wasabout28see/strut.

Smallspacecranes(baysizesof _30-80in.) could
beefficientlyassembledbyastronautsonorbitwitha
minimumofinfrastructure,aswithACCESS.Larger

space cranes could be efficiently assembled by astro-
nauts augmented with aids such as a mobile trans-

porter. For example, the large space crane truss
structure shown in figure 2 could be assembled in

a little over 2 hours with the mobile transporter

(ref. 17). In the future, telerobotie techniques using

the tip manipulator system described in reference 29
could also be used to assemble the space crane on
orbit.

(b) Mobile transporter.

Figure i8. Erectable truss assembly experiments.

Crane Construction on Orbit

The truss members and nodes for the space crane
package compactly for transportation to orbit, and

proven techniques exist for assembling them on orbit.

For example, the Assembly Concept for Construction

of Erectable Space Structures (ACCESS) experiment

was performed in the cargo bay of the Space Shuttle

Atlantis in November 1985 (ref. 28). In the baseline

Concluding Remarks

Many future human space exploration missions
will probably require large vehicles that must be as-

sembled on orbit. The exact specifications of these

large spacecraft and the types of on-orbit opera-

tions required are not well-defined. However, a de-

vice that can move, position, and assemble large
and massive spacecraft components on orbit becomes

essential to support these missions. Current and pro-

posed space manipulators do not have the capabili-

ties that are anticipated to be required; therefore,

space crane concepts for large-scale on-orbit assem-
bly are being developed. These concepts incorporate

the following key features: they are reeonfigurable to
meet changing needs, their structural behavior is pre-

dictable to reduce ground test requirements and to

simplify the rigid-body control system design, they

have large load capability and long reach, and pas-

sive damping is easily implemented. This paper de-
scribes a space crane concept that exhibits all these

features. This concept incorporates three major ele-

ments: (1) a mobile base that can move around the

work site, (2) a crane body that consists of booms

and articulating joints to provide coarse tip position-

ing over large distances, and (3) a tip manipulator

14
ORIGINAL PAw,=

BLACK AND Wi41TF P_IOTOGRAPH



system that provides additional dexterity and pre-

cisely positions payloads.

Using erectable truss hardware makes the space

crane structural concept generic because the hard-

ware can be reconfigured into different geometries

and sizes. Static and dynamic tests have estab-

lished that the hardware has linear and predictable

structural performance. Thus, the space crane struc-

tural behavior can be accurately predicted with lin-

ear analysis. Articulating-truss joint concepts with

significantly different geometries were analyzed and

found to have similar static and dynamic perfor-

mance; thus, criteria other than structural and kine-

matic performance can be used to select a joint.

One- and two-bay rotary joints were also shown to

have little difference in structural efficiency. How-

ever, the one-bay rotary joint is more desirable

because its shorter transition truss members have

higher Euler buckling loads. Finally, passive damp-

ing and the open-loop preshaped command input

technique greatly enhance the structural damping in

the space crane and may preclude the need for an

active vibration suppression system.

NASA Langley Research Center

Hampton, VA 23681-0001

November 3, 1992
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